19 research outputs found

    Effect of oral fluconazole 1200 mg/day on QT interval in African adults with HIV-associated cryptococcal meningitis.

    Get PDF
    We assessed the effect of fluconazole 1200 mg/day on the QT interval in cryptococcal meningitis patients. Mean corrected QT (QTc) change from baseline to day 7 was 10.1 ms (IQR: -28 to 46 ms) in the fluconazole treatment group and -12.6 ms (IQR: -39 to 13.5 ms) in those not taking fluconazole (P = 0.04). No significant increase in QTc measurements over 500 ms was observed with fluconazole. Nevertheless, it remains important to correct any electrolyte imbalance and avoid concomitant drugs that may increase QTc

    Antifungal Combinations for Treatment of Cryptococcal Meningitis in Africa

    Get PDF
    Background Cryptococcal meningitis accounts for more than 100,000 human immunodeficiency virus (HIV)–related deaths per year. We tested two treatment strategies that could be more sustainable in Africa than the standard of 2 weeks of amphotericin B plus flucytosine and more effective than the widely used fluconazole monotherapy. Methods We randomly assigned HIV-infected adults with cryptococcal meningitis to receive an oral regimen (fluconazole [1200 mg per day] plus flucytosine [100 mg per kilogram of body weight per day] for 2 weeks), 1 week of amphotericin B (1 mg per kilogram per day), or 2 weeks of amphotericin B (1 mg per kilogram per day). Each patient assigned to receive amphotericin B was also randomly assigned to receive fluconazole or flucytosine as a partner drug. After induction treatment, all the patients received fluconazole consolidation therapy and were followed to 10 weeks. Results A total of 721 patients underwent randomization. Mortality in the oral-regimen, 1-week amphotericin B, and 2-week amphotericin B groups was 18.2% (41 of 225), 21.9% (49 of 224), and 21.4% (49 of 229), respectively, at 2 weeks and was 35.1% (79 of 225), 36.2% (81 of 224), and 39.7% (91 of 229), respectively, at 10 weeks. The upper limit of the one-sided 97.5% confidence interval for the difference in 2-week mortality was 4.2 percentage points for the oral-regimen group versus the 2-week amphotericin B groups and 8.1 percentage points for the 1-week amphotericin B groups versus the 2-week amphotericin B groups, both of which were below the predefined 10-percentage-point noninferiority margin. As a partner drug with amphotericin B, flucytosine was superior to fluconazole (71 deaths [31.1%] vs. 101 deaths [45.0%]; hazard ratio for death at 10 weeks, 0.62; 95% confidence interval [CI], 0.45 to 0.84; P=0.002). One week of amphotericin B plus flucytosine was associated with the lowest 10-week mortality (24.2%; 95% CI, 16.2 to 32.1). Side effects, such as severe anemia, were more frequent with 2 weeks than with 1 week of amphotericin B or with the oral regimen. Conclusions One week of amphotericin B plus flucytosine and 2 weeks of fluconazole plus flucytosine were effective as induction therapy for cryptococcal meningitis in resource-limited settings. (ACTA Current Controlled Trials number, ISRCTN45035509.

    Corrigendum to "Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project): introduction, rationale, location characteristics and tools" published in Atmos. Chem. Phys., 10, 169–199, 2010

    Get PDF
    Author(s): Hewitt, CN; Lee, JD; MacKenzie, AR; Barkley, MP; Carslaw, N; Carver, GD; Chappell, NA; Coe, H; Collier, C; Commane, R; Davies, F; Davison, B; DiCarlo, P; Di Marco, CF; Dorsey, JR; Edwards, PM; Evans, MJ; Fowler, D; Furneaux, KL; Gallagher, M; Guenther, A; Heard, DE; Helfter, C; Hopkins, J; Ingham, T; Irwin, M; Jones, C; Karunaharan, A; Langford, B; Lewis, AC; Lim, SF; MacDonald, SM; Mahajan, AS; Malpass, S; McFiggans, G; Mills, G; Misztal, P; Moller, S; Monks, PS; Nemitz, E; Nicolas-Perea, V; Oetjen, H; Oram, DE; Palmer, PI; Phillips, GJ; Pike, R; Plane, JMC; Pugh, T; Pyle, JA; Reeves, CE; Robinson, NH; Stewart, D; Stone, D; Whalley, LK; Yang,

    Seasonal characteristics of tropical marine boundary layer air measured at the Cape Verde Atmospheric Observatory

    Full text link

    Impacts of HOx regeneration and recycling in the oxidation of isoprene: Consequences for the composition of past, present and future atmospheres

    Get PDF
    A global chemistry-climate model is used to assess the impact on atmospheric composition of the regeneration and recycling of HOx in the photo-oxidation of isoprene. The impact is explored subject to present-day, pre-industrial and future climate/emission scenarios. Our calculations show that, in all cases, the inclusion of uni-molecular isomerisations of the isoprene hydroxy-peroxy radicals leads to enhanced production of HOx radicals and ozone. The global burden of ozone increases by 25–36 Tg (8–18%), depending on the climate/emissions scenario, whilst the changes in OH lead to decreases in the methane lifetime of between 11% in the future and 35% in the pre-industrial. Critically the size of the change in methane lifetime depends on the VOC/NOx emission ratio. The results of the present-day calculations suggest a certain amount of parameter refinement is still needed to reconcile the updated chemistry with field observations (particularly for HO2+RO2). However, the updated chemistry could have far-reaching implications for: future-climate predictions; projections of future oxidising capacity; and our understanding of past changes in oxidising capacity

    Overview: oxidant and particle photochemical processes above a south-east Asian tropical rainforest (the OP3 project):introduction, rationale, location characteristics and tools

    Get PDF
    In April-July 2008, intensive measurements were made of atmospheric composition and chemistry in Sabah, Malaysia, as part of the "Oxidant and particle photochemical processes above a South-East Asian tropical rainforest" (OP3) project. Fluxes and concentrations of trace gases and particles were made from and above the rainforest canopy at the Bukit Atur Global Atmosphere Watch station and at the nearby Sabahmas oil palm plantation, using both ground-based and airborne measurements. Here, the measurement and modelling strategies used, the characteristics of the sites and an overview of data obtained are described. Composition measurements show that the rainforest site was not significantly impacted by anthropogenic pollution, and this is confirmed by satellite retrievals of NO2 and HCHO. The dominant modulators of atmospheric chemistry at the rainforest site were therefore emissions of BVOCs and soil emissions of reactive nitrogen oxides. At the observed BVOC:NOx volume mixing ratio (similar to 100 pptv/pptv), current chemical models suggest that daytime maximum OH concentrations should be ca. 10(5) radicals cm(-3), but observed OH concentrations were an order of magnitude greater than this. We confirm, therefore, previous measurements that suggest that an unexplained source of OH must exist above tropical rainforest and we continue to interrogate the data to find explanations for this

    Simulating atmospheric composition over a South-East Asian tropical rainforest: performance of a chemistry box model

    Get PDF
    Atmospheric composition and chemistry above tropical rainforests is currently not well established, particularly for south-east Asia. In order to examine our understanding of chemical processes in this region, the performance of a box model of atmospheric boundary layer chemistry is tested against measurements made at the top of the rainforest canopy near Danum Valley, Malaysian Borneo. Multivariate optimisation against ambient concentration measurements was used to estimate average canopy-scale emissions for isoprene, total monoterpenes and nitric oxide. The excellent agreement between estimated values and measured fluxes of isoprene and total monoterpenes provides confidence in the overall modelling strategy, and suggests that this method may be applied where measured fluxes are not available, assuming that the local chemistry and mixing are adequately understood. The largest contributors to the optimisation cost function at the point of best-fit are OH (29%), NO (22%) and total peroxy radicals (27%). Several factors affect the modelled VOC chemistry. In particular concentrations of methacrolein (MACR) and methyl-vinyl ketone (MVK) are substantially overestimated, and the hydroxyl radical (OH) concentration is substantially underestimated; as has been seen before in tropical rainforest studies. It is shown that inclusion of dry deposition of MACR and MVK and wet deposition of species with high Henry's Law values substantially improves the fit of these oxidised species, whilst also substantially decreasing the OH sink. Increasing OH production arbitrarily, through a simple OH recycling mechanism, adversely affects the model fit for volatile organic compounds (VOCs). Given the constraints on isoprene flux provided by measurements, a substantial decrease in the rate of reaction of VOCs with OH is the only remaining option to explain the measurement/model discrepancy for OH. A reduction in the isoprene+OH rate constant of 50%, in conjunction with increased deposition of intermediates and some modest OH recycling, is able to produce both isoprene and OH concentrations within error of those measured. Whilst we cannot rule out an important role for missing chemistry, particularly in areas of higher isoprene flux, this study demonstrates that the inadequacies apparent in box and global model studies of tropical VOC chemistry may be more strongly influenced by representation of detailed physical and micrometeorological effects than errors in the chemical scheme

    Quantifying the magnitude of a missing hydroxyl radical source in a tropical rainforest

    Full text link
    The lifetime of methane is controlled to a very large extent by the abundance of the OH radical. The tropics are a key region for methane removal, with oxidation in the lower tropical troposphere dominating the global methane removal budget (Bloss et al., 2005). In tropical forested environments where biogenic VOC emissions are high and NO[subscript x] concentrations are low, OH concentrations are assumed to be low due to rapid reactions with sink species such as isoprene. New, simultaneous measurements of OH concentrations and OH reactivity, k'[subscript OH'], in a Borneo rainforest are reported and show much higher OH than predicted, with mean peak concentrations of ~2.5×10[superscript 6] molecule cm[superscript −3] (10 min average) observed around solar noon. Whilst j(O[superscript 1]D) and humidity were high, low O[subscript 3] concentrations limited the OH production from O[subscript 3] photolysis. Measured OH reactivity was very high, peaking at a diurnal average of 29.1±8.5 s[superscript −1], corresponding to an OH lifetime of only 34 ms. To maintain the observed OH concentration given the measured OH reactivity requires a rate of OH production approximately 10 times greater than calculated using all measured OH sources. A test of our current understanding of the chemistry within a tropical rainforest was made using a detailed zero-dimensional model to compare with measurements. The model over-predicted the observed HO[subscript 2] concentrations and significantly under-predicted OH concentrations. Inclusion of an additional OH source formed as a recycled product of OH initiated isoprene oxidation improved the modelled OH agreement but only served to worsen the HO2 model/measurement agreement. To replicate levels of both OH and HO[subscript 2], a process that recycles HO[subscript 2] to OH is required; equivalent to the OH recycling effect of 0.74 ppbv of NO. This recycling step increases OH concentrations by 88% at noon and has wide implications, leading to much higher predicted OH over tropical forests, with a concomitant reduction in the CH[subscript 4] lifetime and increase in the rate of VOC degradation

    The atmospheric chemistry of trace gases and particulate matter emitted by different land uses in Borneo

    No full text
    We report measurements of atmospheric composition over a tropical rainforest and over a nearby oil palm plantation in Sabah, Borneo. The primary vegetation in each of the two landscapes emits very different amounts and kinds of volatile organic compounds (VOCs), resulting in distinctive VOC fingerprints in the atmospheric boundary layer for both landscapes. VOCs over the Borneo rainforest are dominated by isoprene and its oxidation products, with a significant additional contribution from monoterpenes. Rather than consuming the main atmospheric oxidant, OH, these high concentrations of VOCs appear to maintain OH, as has been observed previously over Amazonia. The boundary-layer characteristics and mixing ratios of VOCs observed over the Borneo rainforest are different to those measured previously over Amazonia. Compared with the Bornean rainforest, air over the oil palm plantation contains much more isoprene, monoterpenes are relatively less important, and the flower scent, estragole, is prominent. Concentrations of nitrogen oxides are greater above the agro-industrial oil palm landscape than over the rainforest, and this leads to changes in some secondary pollutant mixing ratios (but not, currently, differences in ozone). Secondary organic aerosol over both landscapes shows a significant contribution from isoprene. Primary biological aerosol dominates the super-micrometre aerosol over the rainforest and is likely to be sensitive to land-use change, since the fungal source of the bioaerosol is closely linked to above-ground biodiversity
    corecore